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Abstract—Graph clustering, a classical task in graph learning,
involves partitioning the nodes of a graph into distinct clusters.
This task has applications in various real-world scenarios, such
as anomaly detection, social network analysis, and community
discovery. Current graph clustering methods commonly rely on
module pre-training to obtain a reliable prior distribution for the
model, which is then used as the optimization objective. However,
these methods often overlook deeper supervised signals, leading
to sub-optimal reliability of the prior distribution. To address
this issue, we propose a novel deep graph clustering method
called CGCN. Our approach introduces contrastive signals
and deep structural information into the pre-training process.
Specifically, CGCN utilizes a contrastive learning mechanism to
foster information interoperability among multiple modules and
allows the model to adaptively adjust the degree of information
aggregation for different order structures. Our CGCN method
has been experimentally validated on multiple real-world graph
datasets, showcasing its ability to boost the dependability of
prior clustering distributions acquired through pre-training. As
a result, we observed notable enhancements in the performance
of the model.

Index Terms—graph clustering, contrastive learning, informa-
tion fusion

I. INTRODUCTION

Deep learning methods, renowned for their remarkable
representation learning capabilities, have yielded promising
outcomes in the realm of deep graph clustering [1]–[3],
particularly within various practical graph-based application
domains like anomaly detection, social network analysis, and
community discovery, etc [4]–[7]. As a classical unsupervised
task, graph clustering focuses on how to better classify the
individual nodes in a graph into their corresponding clusters
as much as possible without supervised signals.

The effectiveness of deep graph clustering methods heavily
relies on two critical factors: the optimization objective and
the feature extraction technique [8], [9]. Particularly in un-
supervised clustering scenarios, where the absence of label
guidance poses a challenge, the design of a sophisticated
objective function and an intricate feature extraction approach
can significantly enhance clustering performance.

During the early stages, deep clustering methods primarily
focused on leveraging attribute information within the original
feature space, leading to commendable performance in numer-
ous cases [10], [11]. Recent research endeavors have exhibited
a strong inclination towards extracting geometric structure
information and integrating it with attribute information to fur-

ther enhance clustering accuracy [12], [13]. However, although
existing methods have successfully incorporated both types of
information and achieved performance gains, these methods
tend to rely on simplistic fusion techniques, neglecting deeper
levels of crucial data mining [14]. Consequently, the reliability
of prior clustering distributions obtained through pre-training
various models remains insufficient.

To tackle these challenges, we propose the CGCN method.
The core concept behind this framework revolves around bol-
stering the reliability of the pre-training’s a priori distribution.
We introduce a contrastive learning module [15], [16] that fa-
cilitates cross-referencing and cross-checking among different
pre-training modules, maximizing the retention of vital shared
information. Furthermore, we delve into deeper graph structure
information, enabling the model to dynamically and adaptively
adjust the degree of aggregating different order structure
information during training. The primary contributions of this
paper can be summarized as follows:

(1) The introduction of a contrast learning mechanism
fosters information interoperability among multiple modules
during the pre-training process, thereby enhancing the relia-
bility of the priori clustering distribution.

(2) The module design encourages the model to flexibly ad-
just the degree of information aggregation pertaining to various
order structures, allowing for adaptive changes throughout the
training process.

(3) We validate the effectiveness of our approach through
comprehensive experiments conducted on real-world graph
datasets.

II. RELATED WORK

Graph neural networks (GNNs) have gained significant
popularity in various graph scenarios [17]–[19], such as graph
clustering, knowledge graph [20], link prediction [21], etc.

Among these, attribute graph clustering is a fundamental
task that poses significant challenges. It entails the segregation
of nodes in an attribute graph into distinct clusters devoid of
any human annotation. In early methodologies, self-encoders
were employed to acquire node embeddings, which were then
subjected to K-means [22] clustering.

Building upon the success of GNNs, the MGAE [23] algo-
rithm was introduced, which employed a graph self-encoder
to encode nodes and then performed spectral clustering for
node clustering. To develop a clustering-oriented approach,



the DAEGC [24] framework was proposed, incorporating an
attention-based graph encoder and clustering alignment loss
within deep clustering methods. SDCN [25] demonstrated the
effectiveness of integrating structural and attribute information.

Contrastive learning has emerged as a research hot-spot in
the field of deep graph clustering. AGE [26] addressed high-
frequency noise in node attributes and trained the encoder
using adaptive positive and negative sample comparisons. MV-
GRL [27] generated gradual structural views and compared
node embeddings with graph embeddings to enhance learning.
Despite the validation of the contrast learning paradigm,
several technical issues remain unresolved. GDCL [28] aimed
to correct sampling bias in deep graph clustering with contrast
depth, while TGC [29] provided a generalized framework
for deep node clustering in temporal graphs. To tackle the
chanllege of graph scale, a scalable deep graph clustering
method called S3GC [30] was proposed, leveraging compara-
tive learning with GNNs.

Although effective, these methods usually ignore the deep
structural information and the robust supervised signals form
contrastive view. To address this limitation, our paper intro-
duces a novel method called CGCN that utilizes the contrastive
learning and higher-order structural information to enhance
the prior clustering distribution from the pre-training process.
Next, we give the details of the proposed method.

III. METHOD

A. Overall Framework

Our proposed method, CGCN, is an improvement of the
DFCN method [31], a classical deep graph clustering method,
by introducing AutoEncoder and Graph AutoEncoder to en-
able the computation of a priori clustering distributions during
the pre-training process. We further introduce contrast learning
and higher-order structural information in this session to
enhance the reliability of the a priori clustering distribution.
The structure of our model is shown in Fig. 1.

B. Autoencoder

We introduce the Autoencoder (AE) as one of the pre-
training modules, which is an unsupervised learning model
for data reduction and feature extraction. Its goal is to learn
a compact representation that can reconstruct the input data
while preserving the most important features.

An autoencoder consists of two main components: an En-
coder and a Decoder. The Encoder converts the input data
into a low-dimensional representation (Encoding), while the
Decoder maps the low-dimensional representation back to the
original data space (Decoding). In this way, the autoencoder
can learn a valid feature representation by minimizing the re-
construction error between the input data and the reconstructed
data. Its encoder and decoder are of the form:

H = f(X), ZAE = g(H) (1)

Its loss function is a reconstruction of the sample features:

LAE = ∥ZAE −X∥22 (2)

where X is the initial node features, H is the output of
the encoder. ZAE is the output of the decoder, i.e. the node
embeddings of AE. f(·) and g(·) are functions of the encoder
and decoder, and LAE is the loss function used to measure
the reconstruction error.

C. Graph Autoencoder

Furthermore, we hereby introduce the module of graph au-
toencoder (GAE) as an additional pre-training component. The
primary objective of the GAE is to simultaneously reconstruct
the weighted attribute matrix and the adjacency matrix. The
architectural configuration of both the encoder and decoder
components is detailed below.

Z(l) = σ(ÃZ(l−1)W(l)) (3)

ZGAE = σ(ÃẐ(h−1)Ŵ(h)) (4)

W(l) and W(h) denote the learnable parameter matrices for
the encoder and decoder layers, respectively. The loss function
for GAE is defined as follows:

LIGAE = Lf + γLs (5)

Such loss function can be divided into two parts, i.e., feature
reconstruction Lf and struture reconstruction Ls.

Lf =
1

2N
∥ÃX− ZGAE∥2F (6)

Ls =
1

2N
∥Ã− Â∥2F (7)

ZGAE ∈ RN×d denotes the node embeddings of GAE.
Notably, Eq. (7) employs inner product operations to generate
the reconstructed adjacency matrix, leveraging multi-layer
representations of the network. By minimizing both Eq. (6)
and Eq. (7), the GAE module aims to effectively reduce
the reconstruction loss associated with the weighted attribute
matrix and the adjacency matrix.

D. Structural and Attribute Information Fusion

After pre-training the AE and GAE to obtain their respective
node embeddings, we will use these embeddings to generate
the final node embeddings as well as the priori clustering
distributions. In this subsection, we first present the embedding
generation, i.e., structural and attribute information fusion. The
initial fusion embeddings ZI can be calculated as follows.

ZI = δZAE + (1− δ)ZIGAE (8)

To process the combined information ZI , we employ an
operation similar to graph convolution. This operation allows
us to enhance the initial fused embeddings by incorporating the
local structure present in the data. The combined information
ZI is represented as ZI ∈ RN×d′

, where d′ represents the
dimensionality of the enhanced embeddings.

ZL = ÃZI (9)

Here, Z1 ∈ RN×d′
denotes the locally enhanced repre-

sentation from the first-order neighborhood. In this way, we
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Fig. 1: Overall Framework

can combine different order neighborhood information by the
adjacency matrix. Numerous experiments have proved that
graph neural networks with more than three layers can bring
about over-smoothing phenomenon, so we only select the first
two layers of neighborhood information to be combined here.

ZL = λ1Z
1 + λ2Z

2 (10)

λ1 and λ2 are learnable parameters that control the fusion
degree of different order neighborhood information.

Consequently, we propose the incorporation of a self-
correlation mechanism to leverage non-local relationships
within the initial information fusion space among samples.
To this end, we first calculate the normalized self-correlation
matrix denoted as S ∈ RN×N , as described by Eq. (11).

Sij =
e(ZLZT

L)ij∑N
k=1 e

(ZLZT
L)ik

(11)

Following this, considering S as the coefficient, we take
into account the global inter-sample correlations and perform
a recombination.

ZG = S̃ZL (12)

Lastly, we employ skip connections to facilitate the smooth
transmission of information within the fusion mechanism.

Zfinal = λbZG + ZL (13)

Here, the scaling parameter λb is introduced to adjust the
contribution of the cross-modal dynamic fusion mechanism.
This mechanism effectively considers both local and global
levels of sample correlations. By intricately integrating and
refining the information obtained from the Autoencoder (AE)
and Graph Autoencoder (GAE), this method facilitates a more
accurate learning of consensus latent representations.

E. Priori Clustering Distribution
To provide more reliable guidance during the training of

the clustering network, the model initially employs a robust
clustering embedding Z̃ ∈ RN×d′

. This embedding integrates
information from both the Autoencoder (AE) and Improved
Graph Autoencoder (IGAE) to facilitate target distribution
generation. The generation process can be formulated as
follows.

qij =
(1 + ∥z̃i − uj∥2/v)−

v+1
2∑

j′(1 + ∥z̃i − uj′∥2/v)−
v+1
2

(14)

pij =
q2ij/

∑
i qij∑

j′(q
2
ij′/

∑
i qij′)

(15)

In the initial stage, the similarity between the i-th sample
(z̃i) and the j-th pre-calculated clustering center (uj) in the
fused embedding space is computed using the Student’s t-
distribution as a kernel. This process is represented by Equa-
tion (14), where v denotes the degree of freedom for the
Student’s t-distribution and qij represents the probability of
assigning the i-th node to the j-th center, indicating a soft
assignment.

The soft assignment matrix Q ∈ RN×K reflects the distri-
bution of all samples. In the subsequent step, Equation (15)
is introduced to encourage all samples to move closer to the
cluster centers, thereby enhancing the confidence of cluster
assignment. Specifically, 0 ≤ pij ≤ 1 denotes an element of
the generated target distribution P ∈ RN×K , indicating the
probability of the i-th sample belonging to the j-th cluster
center.

Using the iteratively generated target distribution, the soft
assignment distribution of the AE and GAE modules is cal-
culated separately by applying Equation (14) to the latent
embeddings of each module. The soft assignment distributions
of the AE and GAE are denoted as Q′ and Q′′, respectively.



TABLE I: Dataset Description.

Datasets Nodes Edges Clusters Feature

DBLP 4,058 3,528 4 334
CITE 3,327 4,732 6 3,703
ACM 3,025 13,128 3 1,870

To achieve integration of network training and enhanced
representation capacity for each component, we introduce a
triplet clustering loss that utilizes adapted KL-divergence. The
proposed loss function can be defined as follows.

LKL =
∑
i

∑
j

pij log
pij

(qij + q
′
ij + q

′′
ij)/3

(16)

In this formulation, we aim to align the summation of the
soft assignment distributions of the two modules, and the
fused representations with the robust target distribution. As
the target distribution is generated without human guidance,
we refer to the loss function as the triplet clustering loss
and the corresponding training mechanism as the triplet self-
supervised strategy.

F. Loss Function

The overall learning objective consists of two main parts,
i.e., the reconstruction loss of AE and IGAE, and the clustering
loss which is correlated with the target distribution:

L = LAE + LIGAE + LC + λLKL (17)

λ is a pre-defined hyper-parameter which balances the
importance of reconstruction and clustering.

LC is a loss function that introduces the contrastive learning,
which aims to enhance the constrative signals for the model
training. In particular, LC can be divided into two parts:
pre-training embedding alignment and training embedding
alignment.

LC = αLpre + βLtrain (18)

Lpre = ∥ZGAE − ZAE∥22 (19)

Ltrain = ∥Zfinal − ZAE∥22 (20)

By incorporating these constraints into the contrast mech-
anism, we aim to encourage the model to acquire more
trustworthy contrast signals throughout the pre-training and
training stages. This ensures that the optimization process
progresses in a more accurate direction, leading to improved
model performance.

IV. EXPERIMENTS

A. Datasets and Baselines

We conduct experiments on several real-world datasets, i.e.,
DBLP, CITE, and ACM. As shown in Table I, these datasets
have different edge numbers and feature dimensions.

To showcase the effectiveness of our proposed method,
we conduct a comparative analysis with several state-of-the-
art (SOTA) methods. These methods include AE [32], DEC
[33], and IDEC [34], which are autoencoder-based clustering

approaches that learn representations for clustering by training
an autoencoder. Additionally, GAE and VGAE [35], ARGA
[36], and DAEGC [24] are representative graph convolutional
network-based methods. These approaches embed the clus-
tering representation with structural information using Graph
Convolutional Networks (GCN). Furthermore, SDCN [25] and
DFCN [31] are hybrid methods that leverage both AE and
GCN modules for clustering.

B. Experimental Settings

For comparison baseline methods, we use their default
parameters. For our model, in the part of loss function,
we use two parameters α and β to control the pre-training
loss and training loss which introduce comparative learning,
respectively. For different data sets, the values of these two
hyper-parameters are different, which will be introduced in
detail in the parameter sensitivity experiment.

C. Node Clustering Performance

The clustering performance of our proposed CGCN method
and the baseline methods on three benchmark datasets is
summarized in Table II. Based on the results, we make the
following observations:

* CGCN consistently outperforms the compared methods
in most cases. K-means performs clustering on raw data,
while AE, DEC, and IDEC only utilize node attribute
representations for clustering, neglecting the structural
information. SDCN and DFCN rely on simplistic fusion
techniques, which do not fully capture the deeper levels
of important data patterns. As a result, the reliability of
the prior clustering distributions obtained through pre-
training various models remains insufficient.

* GCN-based techniques like GAE, VGAE, ARGA, and
DAEGC lack the same level of effectiveness demon-
strated by CGCN. These approaches inadequately exploit
the information inherent in the data and may be sub-
ject to constraints related to oversmoothing. In contrast,
CGCN integrates attribute-based representations acquired
through AE within the comprehensive clustering frame-
work. This integration enables concurrent exploration
of graph structure and node attributes, enabled by a
fusion module that facilitates consensus representation
learning. Consequently, CGCN delivers a substantial en-
hancement in clustering performance in comparison to
existing GCN-based methods.

* CGCN achieves better clustering results than the strongest
baseline method, DFCN, in the majority of cases, par-
ticularly on the DBLP, ACM, and CITE datasets. For
example, on the DBLP dataset, CGCN achieves a 1.71%
improvement in accuracy (ACC), a 3.43% improvement
in normalized mutual information (NMI), a 4.46% im-
provement in adjusted Rand index (ARI), and a 1.58%
improvement in F1 score compared to DFCN. This
improvement is attributed to CGCN’s contrast learning
mechanism, which promotes information interoperability
among multiple modules during pre-training, enhancing



TABLE II: Node Clustering Performance. We bold the best results and add underline to the second best results.

Datasets Mteric Kmeans AE DEC IDEC GAE VGAE ARGA DAEGC SDCNQ SDCN DFCN CGCN Improv.

DBLP

ACC 38.7±0.7 51.4±0.4 58.2±0.6 60.3±0.6 61.2±1.2 58.6±0.1 61.6±1.0 62.1±0.5 65.7±1.3 68.1±1.8 76.0±0.8 77.3±0.2 +1.71%
NMI 11.5±0.4 25.4±0.2 29.5±0.3 31.2±0.5 30.8±0.9 26.9±0.1 26.8±1.0 32.5±0.5 35.1±1.1 39.5±1.3 43.7±1.0 45.2±0.4 +3.43%
ARI 7.0±0.4 12.2±0.4 23.9±0.4 25.4±0.6 22.0±1.4 17.9±0.1 22.7±0.3 21.0±0.5 34.0±1.8 39.2±2.0 47.0±1.5 49.1±0.5 +4.46%
F1 31.9±0.3 52.5±0.4 59.4±0.5 61.3±0.6 61.4±2.2 58.7±0.1 61.8±0.9 61.8±0.7 65.8±1.2 67.7±1.5 75.7±0.8 76.9±0.6 +1.58%

CITE

ACC 39.3±3.2 57.1±0.1 55.9±0.2 60.5±1.4 61.4±0.8 61.0±0.4 56.9±0.7 64.5±1.4 61.7±1.1 66.0±0.3 69.5±0.2 70.3±0.1 +1.16%
NMI 16.9±3.2 27.6±0.1 28.3±0.3 27.2±2.4 34.6±0.7 32.7±0.3 34.5±0.8 36.4±0.9 34.4±1.2 38.7±0.3 43.9±0.2 44.7±0.2 +1.83%
ARI 13.4±3.0 29.3±0.1 28.1±0.4 25.7±2.7 33.6±1.2 33.1±0.5 33.4±1.5 37.8±1.2 35.5±1.5 40.2±0.4 45.5±0.3 46.5±0.1 +2.20%
F1 36.1±3.5 53.8±0.1 52.6±0.2 61.6±1.4 57.4±0.8 57.7±0.5 54.8±0.8 62.2±1.3 57.8±1.0 63.6±0.2 64.3±0.2 65.1±0.1 +1.25%

ACM

ACC 67.3±0.7 81.8±0.1 84.3±0.8 85.1±0.5 84.5±1.4 84.1±0.2 86.1±1.2 86.9±2.8 87.0±0.1 90.5±0.2 90.9±0.2 91.5±0.1 +0.67%
NMI 32.4±0.5 49.3±0.2 54.5±1.5 56.6±1.2 55.4±1.9 53.2±0.5 55.7±1.4 56.2±4.2 58.9±0.2 68.3±0.3 69.4±0.4 70.3±0.2 +1.30%
ARI 30.6±0.7 54.6±0.2 60.6±1.9 62.2±1.5 59.5±3.1 57.7±0.7 62.9±2.1 59.4±3.9 65.3±0.2 73.9±0.4 74.9±0.4 75.6±0.2 +0.94%
F1 67.6±0.7 82.0±0.1 84.5±0.7 85.1±0.5 84.7±1.3 84.2±0.2 86.1±1.2 87.1±2.8 86.8±0.1 90.4±0.2 90.8±0.2 91.1±0.2 +0.34%
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Fig. 2: Ablation Study.
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the reliability of the prior clustering distribution. Fur-
thermore, CGCN allows for flexible adjustment of the
degree of information aggregation related to different
order structures, enabling adaptive changes throughout
the training process.

D. Ablation Study

To further validate the effectiveness of our proposed method,
we conducted ablation studies. In these studies, we com-
pared the performance of DFCN with two modified versions:
DFCN+C and DFCN+S. DFCN+C represents the introduction

of only the contrastive learning mechanism, while DFCN+S
denotes adjusting the degree of information aggregation related
to various order structure information.

Across all three datasets, we consistently observed that both
DFCN+C and DFCN+S outperformed the baseline DFCN. The
improvement in clustering performance was more significant
when the contrastive learning mechanism was introduced,
compared to solely adjusting the degree of information ag-
gregation related to various order structure information. More-
over, when both mechanisms were employed simultaneously in
DFCN+C+S, even better results were achieved. These findings
collectively highlight that our proposed method can leverage
more comprehensive information to enhance the generalization
capabilities of deep clustering networks.

E. Parameter Sensitivity

The introduction of two hyperparameters, α and β, in
CGCN allows us to control the proportion of dissimilarity
between ZAE and Ã and between ZAE and ZIGAE during
training. To investigate the impact of these parameters on all
datasets, we conducted experiments by fixing the value of one
parameter and varying the value of the other parameter from 0
to 2 in increments of 0.5. The results, as shown in the figures,
provide the following insights:

* The hyper-parameters α and β have a significant effect on
improving the clustering performance, and the adjustment
of their ratio yields different clustering outcomes.

* The method exhibits stable performance changes within
the range of values for α and β.



* The optimal ratios of the two hyper-parameters vary for
different datasets. For the ACM dataset, the best model
performance is achieved when α:β = 0.5:1. For the CITE
dataset, the optimal parameters are α:β = 0.5:0.5. Lastly,
for the DBLP dataset, the optimal parameters are α:β =
2:0.5. These findings suggest that the optimal ratio of the
hyper-parameters depends on the specific characteristics
and complexities of each dataset.

V. CONCLUSION

In order to overcome the limitations of neglecting deep
contrast and structural information in depth graph clustering,
we present a novel method called Contrastive Graph Convo-
lutional Network (CGCN). Our approach integrates contrast
signals and deep structural information into the pre-training
phase. Experimental evaluations conducted on various real
graph datasets demonstrate that our proposed CGCN method
enhances the reliability of the prior clustering distributions
obtained from pre-training, leading to improved model perfor-
mance. Moving forward, our future research endeavors will
focus on developing scalable graph clustering frameworks to
accommodate larger-scale graph datasets.
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